In the final part of this hookup guide we take some of the code used on the wind direction and wind speed sketch to create a combined program that does both. We also add some additional functionality like display the speed in knots or km/hr. We can also display the window direction by degrees or direction based on the wind vane position.
In part 2 of this hookup guide in the software we used a delay function to create a 3 second delay to average the wind speed over that time. The delay function will suspend the loop from executing for that time period but the interrupt handler routine that is executed when ever the wind cups rotate one revolution is still functioning. Normally you would avoid using delays as it blocks any other code from executing for that time period.
In this code we are using a timer interrupt that will generate an interrupt when the 0.5 second timer is triggered. The interrupt service routine called isr_timer will execute and this will be used to create a 2.5 second sample period.
We are using the TimerOne library to provide the timer interrupt functionality. You can download this library from several sources including the arduino website.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
#include "TimerOne.h" // Timer Interrupt set to 2 second for read sensors
#include <math.h> #define WindSensorPin (2) // The pin location of the anemometer sensor #define WindVanePin (A4) // The pin the wind vane sensor is connected to #define VaneOffset 0; // define the anemometer offset from magnetic north int VaneValue; // raw analog value from wind vane int Direction; // translated 0 - 360 direction int CalDirection; // converted value with offset applied int LastValue; // last direction value volatile bool IsSampleRequired; // this is set true every 2.5s. Get wind speed volatile unsigned int TimerCount; // used to determine 2.5sec timer count volatile unsigned long Rotations; // cup rotation counter used in interrupt routine volatile unsigned long ContactBounceTime; // Timer to avoid contact bounce in isr float WindSpeed; // speed miles per hour void setup() { LastValue = 0; IsSampleRequired = false; TimerCount = 0; Rotations = 0; // Set Rotations to 0 ready for calculations Serial.begin(9600); pinMode(WindSensorPin, INPUT); attachInterrupt(digitalPinToInterrupt(WindSensorPin), isr_rotation, FALLING); Serial.println("Davis Anemometer Test"); Serial.println("Speed (MPH)\tKnots\tDirection\tStrength"); // Setup the timer interupt Timer1.initialize(500000);// Timer interrupt every 2.5 seconds Timer1.attachInterrupt(isr_timer); } void loop() { getWindDirection(); // Only update the display if change greater than 5 degrees. if(abs(CalDirection - LastValue) > 5) { LastValue = CalDirection; } if(IsSampleRequired) { // convert to mp/h using the formula V=P(2.25/T) // V = P(2.25/2.5) = P * 0.9 WindSpeed = Rotations * 0.9; Rotations = 0; // Reset count for next sample IsSampleRequired = false; Serial.print(WindSpeed); Serial.print("\t\t"); Serial.print(getKnots(WindSpeed)); Serial.print("\t"); Serial.print(CalDirection); getHeading(CalDirection); Serial.print("\t\t"); getWindStrength(WindSpeed); } } // isr handler for timer interrupt void isr_timer() { TimerCount++; if(TimerCount == 6) { IsSampleRequired = true; TimerCount = 0; } } // This is the function that the interrupt calls to increment the rotation count void isr_rotation() { if((millis() - ContactBounceTime) > 15 ) { // debounce the switch contact. Rotations++; ContactBounceTime = millis(); } } // Convert MPH to Knots float getKnots(float speed) { return speed * 0.868976; } // Get Wind Direction void getWindDirection() { VaneValue = analogRead(WindVanePin); Direction = map(VaneValue, 0, 1023, 0, 359); CalDirection = Direction + VaneOffset; if(CalDirection > 360) CalDirection = CalDirection - 360; if(CalDirection < 0) CalDirection = CalDirection + 360; } // Converts compass direction to heading void getHeading(int direction) { if(direction < 22) Serial.print(" N"); else if (direction < 67) Serial.print(" NE"); else if (direction < 112) Serial.print(" E"); else if (direction < 157) Serial.print(" SE"); else if (direction < 212) Serial.print(" S"); else if (direction < 247) Serial.print(" SW"); else if (direction < 292) Serial.print(" W"); else if (direction < 337) Serial.print(" NW"); else Serial.print(" N"); } // converts wind speed to wind strength void getWindStrength(float speed) { if(speed < 2) Serial.println("Calm"); else if(speed >= 2 && speed < 4) Serial.println("Light Air"); else if(speed >= 4 && speed < 8) Serial.println("Light Breeze"); else if(speed >= 8 && speed < 13) Serial.println("Gentle Breeze"); else if(speed >= 13 && speed < 18) Serial.println("Moderate Breeze"); else if(speed >= 18 && speed < 25) Serial.println("Fresh Breeze"); else if(speed >= 25 && speed < 31) Serial.println("Strong Breeze"); else if(speed >= 31 && speed < 39) Serial.println("Near Gale"); else Serial.println("RUN"); } |
In the isr_timer interrupt handler we check if 2.5 seconds has elapsed. If so then we set the IsSampleRequired flag to true. In the loop code we check if this flag is true. If so we then calculate the speed of the anemometer. We then update the console with the new values. We also reset the IsSampleRequired flag to false.